Parallel and Memory-efficient Preprocessing
for Metagenome Assembly

Vasudevan Rengasamy Paul Medvedev Kamesh Madduri
School of EECS
The Pennsylvania State University

{vxr162, pashadag, madduri}@cse.psu.edu

HiCOMB 2017

1/46

Talk Outline

Motivation for our work

METAPREP: a new metagenome pre-processing strategy

METAPREP evaluation
Parallel Scaling
Comparison to prior work
Impact on Metagenome assembly

Conclusions and Future work

2/46

Metagenome assembly

What is metagenome assembly?

» Metagenome: Mixed genomes present in an environment
sample (Soil, Human gut, etc.).

» Assembly: Re-constructing genome sequence from reads.

3/46

Metagenome assembly

What is metagenome assembly?

» Metagenome: Mixed genomes present in an environment
sample (Soil, Human gut, etc.).

» Assembly: Re-constructing genome sequence from reads.

Why is metagenome assembly challenging?

Uneven coverage of genomes.
Repeated sequences across genomes.
Variable sizes of genomes.

M-

Large dataset sizes (as the output from multiple
sequencing runs may be merged).

Metagenome assembly tools (MEGAHIT, MetaVelvet,
metaSPAdes, etc.) attempt to overcome these challenges.

4/46

MEGAHIT [Li2016] metagenome assembler

» State-of-the-art metagenome assembler.
» Uses a highly compressed de Bruijn graph representation.
» Refines assembly quality by using multiple k-mer lengths.

» Supports single-node shared memory parallelism (both
CPUs and GPUs).

» 47 minutes to assemble a metagenome dataset containing
4.26 Gbp.

5/46

A preprocessing strategy for Metagenome assembly

» Introduced by Howe et al. [Howe2014].

» After filtering low frequency k-mers, partition de Bruijn
graph into weakly connected components (WCCs).

» Assemble each large component independently.

6/46

Recent work on metagenome partitioning [Flick2015]

» Construct an undirected read graph instead of a de Bruijn
graph.

» Find connected components in the read graph using a
distributed memory parallel approach based on
Shiloach-Vishkin algorithm.

» Read graph components correspond to de Bruijn graph
WCCs.

7/46

Our contributions

» Novel multi-stage algorithm to find connected components
from read graphs.

» End-to-end hybrid parallelism using MPl and OpenMP.
» Memory aware implementation.

» Evaluate impact of preprocessing on metagenome
assembly.

8/46

METAPREP

» New Metagenome Preprocessing tool.
» Main memory use is parameterized.

» Multipass approach: Only enumerate a subset of k-mers in
each pass.
» e.g., 10 passes = 10x memory reduction.

» log(P) inter-node communication steps.

9/46

Talk Outline

METAPREP: a new metagenome pre-processing strategy

10/46

METAPREP overview

Input:
FASTQ
files

Construct Read Graph

|

Find Connected Components

Output:
FASTQ
files

11746

METAPREP overview

METAPREP step

Function

IndexCreate
KmerGen
KmerGen-Comm

LocalSort
LocalCC

MergeCC

Create index files for parallel
runs.

Enumerate (k-mer, read;) tu-
ples.

Transfer (k-mer, read;) tuples
to owner tasks.

Sort tuples by k-mers.
Identify connected compo-
nents (CCs).

Merge components across
tasks, create output FASTQ
files with reads from largest
CC and other CCs.

Input:
FASTQ
files

IndexCreate

KmerGen

LocalSort
LocalCC

KmerHist

FASTQPart

Multiple Passes

12/46

A simple strategy for static work partitioning

» Precompute an m-mer histogram (m < k, defaults are
k=27, m=10)

» Used to partition k-mers across MPI tasks and threads in a
load balanced manner.

Reads: k-mers: m-mer histogram:
R1:ACTAGG —=> ACTAG,CTAGG —=> AC-1
R2: CTGTAA CTGTA, TGTAA CT-2

TG -1

13746

Notation

Notation Description

M Total number of k-mers enumerated
R Paired-end read count

S Number of I/0 passes

P Number of MPI tasks

T Number of threads per task

14/46

k-mer Enumeration

v

Generate (k-mer, read_id) tuples.

v

Multiple threads write to single array without
synchronization. Offsets precomputed.
Output: a buffer on each MPI task.

» k-mers are partially sorted.

Time: O(%2), Space ~ 2 bytes.

v

v

Thread 1 offset Thread T offset

/ /

| |

To MPI Task 1 To MPI Task P
Send Buffer at MPI task i

15/46

Sort by k-mer

» Sort tuples by k-mer value to identify reads with common
k-mer and create read graph edges.
» Radix sort implementation.

» Reuse send buffer = No additional memory .
» Partition tuples into T disjoint ranges.
» Sort ranges in parallel using T threads.

> Time: O(4), Space ~ X bytes.

16/46

|dentify connected components

» Find connected components using edges from local
k-mers.

» Union-by-index and path splitting.

Union (6,5)
) @ e

Find (6)
Path Splitting
q" e' > i

171746

|dentify connected components

» Find connected components using edges from local
k-mers.
» Union-by-index and path splitting.
» No critical sections.
» Store edges that merges components (similar to

[Patwary2012]).
» Process edges again in case of lost updates.

> Time: O(Xlog*R), Space ~ 12¥ + 4R bytes.

18/46

Merge components

» Merge component forests in each MPI task in log P
iterations.
» Time: O(R log P log*R), Space =~ 8R bytes.

PO P1 P2 P3
PO P2

e e -

PO
2:

19/46

Talk Outline

METAPREP evaluation
Parallel Scaling
Comparison to prior work
Impact on Metagenome assembly

20/46

Experiments and Results

Description of datasets

Read Count Size

ID Dataset Source
R(x10% (Gbp)

HG Human gut 12.7 2.29 NCBI (SRR341725)
LL Lake Lanier 21.3 4.26 NCBI (SRR947737)
MM Mock microbial 54.8 11.07 NCBI (SRX200676)

community
IS lowa, Continuous 1132.8 223.26)Gl (402461)

corn soil

Machine configuration

» Edison supercomputer at NERSC
» Each node has 2x 12-core Ivy bridge processors and 64 GB
memory.

21/46

Overview

METAPREP evaluation
Parallel Scaling

22/46

Single node scaling for Human Gut (HG) Dataset

300 ——
|| I KmerGen-1/0
230¢ 120 |EEE KmerGen
[LocalSort
& 200 /== _g [LocalCC-Opt
E 1" ¢ |= cco
g 150 »'| e—e Speedup
@ 2
£ 10 ©
F 100 &
50 5
0

1 2 4 8 12 24
Threads

23/46

Multi-node scaling for Human Gut (HG) Dataset

25 T T

KmerGen-1/0
KmerGen
KmerGen-Comm
LocalSort
LocalCC-Opt
Merge-Comm
MergeCC
CC-1/0

Speedup

20 |

SO

Time (seconds)

24/46

Multi-node scaling for LL and MM datasets

LL (5=2) MM (S=4)
40 T T T 16 180 T T T 16
35
30
o
€ 2
Qo
g 20
< 8
[
E 15
'_
10
4
5
0
1 2 4 8 16
Nodes Nodes
I KmerGen-1/0 [LocalSort 1 MergeCC
I KmerGen [LocalCC-Opt 1 CCI/o
[0 KmerGen-Comm [Merge-Comm @@ Speedup

25/46

Multi-node scaling for lowa Continuous Soil dataset

900
I KmerGen-1/0
800 - 1X [KmerGen
7001 0 KmerGen-Comm
[LocalSort
__ 600 [LocalCC-Opt
é [Merge-Comm
S 500 [MergeCC
Q
% 400 [Ccc-l/0
£
'_

16 64
Nodes

For 16 node run, S = 8. For 64 node run, S = 2.

26/46

Overview

METAPREP evaluation

Comparison to prior work

27146

KmerGen performance comparison with KMC-2 k-mer
counter [Deorowicz2015]

140 90
EE MetaPrep
[KMC-2

[KMC-2]
I MetaPrepl6

120 1

100 -

80 |-

Time (seconds)

60

40 +

6.76X

10 l
79X .18X
0

HG LL MM HG LL MM
Dataset Dataset

20

» MetaPrep16: METAPREP run using 16 nodes.

28/46

Comparison with read graph connectivity [Flick2015]

Table 1: Execution time comparison with Metagenome partitioning
work (AP_LB) using 16 nodes.

Time (seconds) METAPREP

Dataset \iraPrep AP_LB Speedup
HG 55 236 4.22x
LL 1.5 259 2.25x%
MM 19.6 56.1 2.86x

» 21 iterations for AP_LB vs 4 for METAPREP for MM dataset.

29/46

Overview

METAPREP evaluation

Impact on Metagenome assembly

30/46

Largest component size

» Largest component size can be reduced by using filters.

1. k-mer size (k) - Longer k-mers occur in fewer components
2. k-mer frequency (KF) - Filter erroneous (low frequency) and
repeat k-mers (high frequency)

31/46

Largest component size

» Largest component size can be reduced by using filters.

1. k-mer size (k) - Longer k-mers occur in fewer components
2. k-mer frequency (KF) - Filter erroneous (low frequency) and

repeat k-mers (high frequency)

Largest Component Size (%)

100

80 |

60 |-

40

20

HG dataset

o k=27

a k=63

>e

None

KF <30 10<KF <30
Filter

32/46

MEGAHIT single-node execution time for MM dataset

2500 , , [
T [0 Meganit
[0 MetaPrep
2000 -
— 1.36X
%]
T 1500 |
o
[}
()
2
g 1000 | .
E
500 | B

L L L
Full LC (NoFilter) LC (KF<30)

33/46

MEGAHIT assembly quality

Table 2: Assembly Quality Comparison - MM dataset.

Type Contigs Total (Mbp) N50 (bp)
No Preproc 24931 203.65 50607
No Filter 25002 203.65 50550
KF < 30 40632 208.24 23126

34/46

Talk Outline

Conclusions and Future work

35/46

Conclusions

1. Developed a new memory efficient parallel workflow for
partitioning metagenome dataset into connected
components.

2. Speedup up to 4.22x over AP_LB approach by [Flick2015].

3. We can process a metagenome dataset with 1.13 billion
reads (lowa continuous corn soil) in 14 minutes using 16
nodes of Edison.

4. Preprocessing time (METAPREP) <« Assembly time.

36/46

Future Work

1. For most datasets, we observe creation of a single large
connected component after partitioning the read graph.

» Splitting components using filters impacts assembly quality.

» Does scaffolding help in improving assembly quality?

2. Reduce data exchanged in the inter-node communication
step of connected components.

37/46

Acknowledgment

This research is supported in part by NSF award #1439057. This
research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No.

DE-AC02-05CH11231.

38/46

References |

[§ Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and
Agnieszka Debudaj-Grabysz.
KMC 2: Fast and resource-frugal k-mer counting.
Bioinformatics, 31(10):1569-1576, 2015.

[§ Patrick Flick, Chirag Jain, Tony Pan, and Srinivas Aluru.
A parallel connectivity algorithm for de Bruijn graphs in
metagenomic applications.

In Proc. Int’l. Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), 2015.

ﬁ Adina Chuang Howe, Janet K. Jansson, Stephanie A. Malfatti,
Susannah G. Tringe, James M. Tiedje, and C. Titus Brown.
Tackling soil diversity with the assembly of large, complex
metagenomes.

Proceedings of the National Academy of Sciences,
111(13):4904-49009, 2014.

39/46

References Il

@ Dinghua Li, Ruibang Luo, Chi-Man Liu, Chi-Ming Leung,
Hing-Fung Ting, Kunihiko Sadakane, Hiroshi Yamashita, and
Tak-Wah Lam.

MEGAHIT v1.0: A fast and scalable metagenome assembler
driven by advanced methodologies and community
practices.

Methods, 102:3-11, 2016.

[Md Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne.

Multi-core spanning forest algorithms using the disjoint-set
data structure.

In Proc. IEEE Int'l. Parallel & Distributed Processing Symposium
(IPDPS), 2012.

40/46

Thank You

41/46

o)
- T=¢+. . Y,
&
v

(0)7
>
i * _.% * i O
Il Il N&\\—\

L
r~ Nel 0 <t [ael (o} — (==}

(spuo2ss) swi|

Load Balance among 16 MPI tasks - MM dataset

Preprocessing Step

42746

Multi-pass Execution - MM dataset

70 T T T T
4 60
[KmerGen
60 [KmerGen-Comm
" 50 [LocalSort
LocalCC-Opt
f‘-g" 40 0z [MergeCC
o
g < | ccljo
8 2
2 3 30 8 00 Memory/Node
E [
i =
2 20
0 0

Passes

43/46

Table 3: Index creation time (sequential).

Time (seconds)

Dataset # Chunks FASTQPart merHist

HG 384 32 109
LL 384 32 154
MM 384 33 343

IS 1536 180 5160

44746

Table 4: Impact of k on single-node METAPREP execution time (MM
dataset).

Time (seconds)
KmerGen LocalSort LocalCC-Opt CC-I/0 Total

27 77.02 55.33 6.41 540 14416
63 59.73 67.60 5.16 535 137.84

45/46

Table 5: Assembly Quality Comparison.

Dataset Type

MEGAHIT assembly output statistics

Contigs Total (Mbp) Max (bp) N50 (bp)

HG

LL

MM

No Preproc

No Filter
LC
Other

KF < 30
LC
Other

No Preproc

No Filter
LC
Other

KF < 30
LC
Other

No Preproc

No Filter
LC
Other

KF < 30
LC
Other

63519

63483
58770
4713

64571
56732
7839

179828

181751
141136
40615

182717
140081
42636

24931

25002
23959
1043

40632
26233
14399

116.19

116.18
113.83
2.35

119.01
110.13
8.87

165.63

166.67
148.75
17.9

168.42
147.51
20.90

203.65

203.65
202.99
0.66

208.24
156.04
52.19

217183

217183
217183
2860

217183
217183
43863

225770

225805
225805
4028

225770
225770
43718

1067762

1067762
1067762
5788

611608
611608
591560

5071

5098
5510
513

5123
5687
2271

1273

1263
1593
432

1275
1587
465

50607

50550
50781
695

23126
28135
12285

46/46

	Motivation for our work
	MetaPrep: a new metagenome pre-processing strategy
	MetaPrep evaluation
	Parallel Scaling
	Comparison to prior work
	Impact on Metagenome assembly

	Conclusions and Future work

